Browsing by Author "Karanja, J.K."
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Cow Pea Trainer of Trainers’ Manual(Kenya Agricultural and Livestock Research Organization., 2019-04) Macharia, D.; Waithaka, M.; Otipa, M.; Too, A.; Esilaba, A.O.; Nyongesa, D.; Okoti, M.; Mutuma, E.; Kathuku-Gitonga, A.N.; Mutisya, D.; Njunie, M.; Muli, B.; Karanja, J.K.; Wasilwa, L.; Kenya Agricultural and Livestock Research Organization.Cowpea (Vigna unguiculata (L.) Walp) is an important food and fodder legume crop in the semi-arid tropics. It is grown in 45 countries across the world. An estimated 14.5 million ha of land is planted to cowpea each year worldwide. Sub-Saharan Africa region accounts for about 84% of area as well as production. The world average yield is estimated at about 450 kg/ha. Kenya is among the major cowpea producing countries in Africa. Cowpea is well suited to diverse environments and fit in various cropping systems owing to their wide adaptability, low input requirements, fast growth, nitrogen fixing and weed smothering ability. The majority of cowpea growers are women who grow the crop primarily for household food, but also for sale-an increasing phenomenon in recent years. The typical woman cowpea grower has a small plot, 0.625 to 2.5 acres often intercropped with other cereals such as sorghum, millet and maize. The purpose of this training of trainers’ module is to familiarize master trainers on the cowpea technologies, innovations and management practices (TIMPs) and empower them with knowledge and skills to train farmers’ trainers.Item Kalro-Kcep - CRAL Climate Smart Agriculture Extension Manual(Kenya Agricultural and Livestock Research Organization., 2019-04) Kisilu, R.; Karanja, J.K.; Mwathi, J.W.; Ooro, P.A.; Esilaba, A.O.; Nyongesa, D.; Okoti, M.; Githunguri, C.; Miriti, J.; Otipa, M.; Nassiuma, E.; Too, A.; Kamidi, M.; Wanjekeche, E.; Odoyo, E.; Wayua, F.; Likhayo, P.; Kamau, G.M.; Ochieng, V.; Wasilwa, L.; Kenya Agricultural and Livestock Research OrganizationClimate change is real and has become an obstacle to sustainable development all over the world. Climate change has positive and negative effects in agriculture depending on the regions of the world. The negative impacts are expected to be more serious in developing countries, particularly those in sub-Saharan Africa such as Kenya. For instance, Kenya has experienced increasing temperatures from 1960’s, together with higher frequency and intensity of extreme weather events such as El Niño and La Niña. Effects of the negative impacts include declining agricultural productivity and loss of crops, livestock, fish and investments in agriculture due to changing temperatures and rainfall and many extreme weather events.Item KALRO-KCEP - CRAL Common Dry Beans Extension Manual(Kenya Agricultural and Livestock Research Organization., 2016-04) Macharia, D.; Waithaka, M.; Esilaba, A.O.; Nyongesa, D.; Okoti, M.; Githunguri, C.; Miriti, J.; Otipa, M.; Too, A.; Bett, B.; Gathambiri, C.; Amata, R.; Nassiuma, E.; Odoyo, E.; Wayua, F.; Karanja, J.K.; Mwathi, J.W.; Likhayo, P.; Ooro, P.A.; Ochieng, V.; Wasilwa, L.; Kenya Agricultural and Livestock Research OrganizationPulses, or grain legumes in general, are an essential source of supplementary protein to daily diets based on cereals and starchy for a predominantly vegetarian population and those who cannot afford expensive animal protein. Pulses are therefore often regarded as poor man’s meat”. They also provide energy, protein, essential minerals, vitamins and several compounds considered beneficial for good health. Their cultivation enriches soil by adding nitrogen, and improves the physical, chemical and biological soil properties. They are also well suited to diverse environments and fit in various cropping systems owing to their wide adaptability, low input requirements, fast growth, nitrogen fixing and weed smothering ability. Their short growing period and photoperiod sensitivity make them suitable for crop intensification and diversification. Notwithstanding their high production potential, their productivity is generally low as these are cultivated on poor lands, with no or little inputs, and are susceptible to several abiotic and biotic stresses.Item KALRO-KCEP - CRAL Green Grams Trainer of Trainers’ Manual(Kenya Agricultural and Livestock Research Organization, 2019-04) Macharia, D.; Waithaka, M.; Otipa, M.; Too, A.; Esilaba, A.O.; Nyongesa, D.; Okoti, M.; Mutuma, E.; Kathuku-Gitonga, A.N.; Mutisya, D.; Njunie, M.; Muli, B.; Karanja, J.K.; Wasilwa, L.; Kenya Agricultural and Livestock Research OrganizationGreen gram (Vigna radiata L.) also known as Mung bean and in Kiswahili Ndengu is one of the potential food and cash crop pulses that have been observed to perform well in the arid regions of Kenya. The crop is commonly grown in central, south Nyanza, eastern and coastal regions. Green gram is well suited to diverse environments and fit in various cropping systems owing to their wide adaptability, low input requirements, fast growth, nitrogen fixing and weed smothering ability. Sole crop, cereal-bean and root or tuber crop-green gram intercrops are important among the many green gram cropping systems in Kenya and for which the crop‘s rapid maturity and shade tolerance make it particularly suitable.Item KCEP - CRAL Green Grams Extension Manual(Kenya Agricultural and Livestock Research Organization, 2019-04) Macharia, D.; Waithaka, M.; Otipa, M.; Nassiuma, E.; Esilaba, A.O.; Nyongesa, D.; Okoti, M.; Githunguri, C.; Miriti, J.; Too, A.; Bett, B.; Gathambiri, C.; Amata, R.; Odoyo, E.; Wayua, F.; Karanja, J.K.; Mwathi, J.W.; Likhayo, P.; Ooro, P.A.; Kamau, G.M.; Ochieng, V.; Wasilwa, L.; Kenya Agricultural and Livestock Research OrganizationPulses, or grain legumes in general, are an essential source of supplementary protein. They also provide energy, protein, essential minerals, vitamins and several compounds considered beneficial for good health. Their cultivation enriches soil by adding nitrogen, and improves the physical, chemical and biological soil properties. They are also well suited to diverse environments and fit in various cropping systems owing to their wide adaptability, low input requirements, fast growth, nitrogen fixing and weed smothering ability. Their short growing period and photoperiod sensitivity make them suitable for crop intensification and diversification. Not withstanding their high production potential, their productivity is generally low as these are cultivated on poor lands, with no or little inputs, and are susceptible to several abiotic and biotic stresses.Green gram (Vigna radiata L.) also known as Mung bean and in Kiswahili Ndengu is one of the potential food and cash crop pulses that have been observed to perform well in the arid regions of Kenya. The crop is commonly grown in central, south Nyanza, eastern and coastal regions. Its edible grain is characterized by good digestibility, flavor, high and easily digestible protein content and absence of any flatulence effects (Ahmed et al., 2001). Its seed contains contain approximately 374Kcal, 23.9% protein, 1.2% fat, 16.3% dietary fiber, 4.5-5.5% ash, 63% carbohydrates on dry weight basis. It’s also a crucial source of vitamins A and B complex and generous amounts of micro-nutrients such as iron and zinc which are deficient in diets among the poor, particularly pregnant women and children in Africa (Swaminathan et. al., 2012).Item KCEP - Maize Production Training and Extension Manual(Kenya Agricultural and Livestock Research Organization, 2016-08) Karanja, J.K.; Mwathi, J.W.; Ooro, P.A.; Esilaba, A.O.; Nyongesa, D.; Kamidi, M.; Wanjekeche, E.; Macharia, D.; Waithaka, M.; Woyengo, V.; Barkutwo, J.; Githunguri, C.; Kamau, G.; Miriti, J.; Nassiuma, E; Masinde, W.; Mwenda, M.; Njaimwe, A.; Macharia, M.; Gitari, J.; Murage, P.M.; Koech, M.; Thuranira, E.; Ashiono, G.; Rono, B.; Ketiem, P.K.; Kimani, S.; Gachuki, P.; Wanyonyi, M.; Maina, I.; Mutoko, C.; Ringera, J.M.; Odendo, M.; Kipkemoi, P.L.; Chebosonwy, R.; Magiroi, K.N.; Mwangi, H.; Onyango, E.M.The scientific name for maize is Zea mays; but for the purpose of this manual it will be referred to as maize. This production manual is a guide on growing maize successfully in different agro-ecological areas of Kenya, in a rain fed system not under irrigation. However, many principles of agronomy are relevant to both irrigated and rainfed farming systems. Maize is a staple food in Kenya, accounting for an average production of 4.4 million tonnes for the period 2010 to 2013 (FAO, 2015). It contributes to about 65% of daily per capita cereal consumption and serves as subsistence and a commercial crop grown on an estimated 1.4 million hectares. Maize production accounts for more than 20% of the total agricultural production and 25% of agricultural employment in the country. It is an important source of carbohydrate, protein, iron, vitamin B, and minerals. Maize products include baked, roasted and boiled fresh maize on the cob, porridge, pastes, beer, starch, oil and livestock feed from by-products of fresh and dry maize grain. This manual outlines important maize-crop agronomy and provides information on the methodology and technology that farmers may be able to utilise to grow maize in Kenya. Climate change, increased human activities, pathogen and vector evolution have increased the spread of invasive pests and diseases in maize farming systems in Kenya. The country has faced severe disease and pest outbreaks that impact on the country’s food security. Heavy attacks of loses of as much as 100% have been reported due to Maize lethal necrosis disease and fall armyworm. The use of Integrated Pest Management (IPM) provides maize farmers with management options to reduce pesticides use in the management of pest and diseases. Precise and prompt pest and disease detection are vital for their prevention or management. After harvesting their crop, farmers in Kenya face challenges of poor grain handling and management, leading to 30% of post-harvest losses, translating to more than US$ 4 billion losses per annum (Hodges et al., 2011). They also market their grain at low price at harvest time forcing households to buy grains for family consumption when prices increase. Post-harvest losses lead to insufficient food supply, even when crop yields and land under cultivation have been increasing. This is partly due to lack of knowledge on appropriate methods of grain storage. This post- 11 harvest management component will support farmers in securing high returns from investments on grain production. This is through adoption of improved on-farm grain handling practices to minimize post-harvest losses and enhanced access to markets offering favourable terms. This manuals’ goal is to reduce post-harvest losses from the current estimated 30% to industry accepted levels of below 5%. This will lead to usage of certified warehouse system by farmers to bulk and sell their produce at a price 30% higher than prevailing farm gate price. systems in Kenya. The country has faced severe disease and pest outbreaks that impact on the country’s food security. Heavy attacks of loses of as much as 100% have been reported due to Maize lethal necrosis disease and fall armyworm. The use of Integrated Pest Management (IPM) provides maize farmers with management options to reduce pesticides use in the management of pest and diseases. Precise and prompt pest and disease detection are vital for their prevention or management. After harvesting their crop, farmers in Kenya face challenges of poor grain handling and management, leading to 30% of post-harvest losses, translating to more than US$ 4 billion losses per annum (Hodges et al., 2011). They also market their grain at low price at harvest time forcing households to buy grains for family consumption when prices increase. Post-harvest losses lead to insufficient food supply, even when crop yields and land under cultivation have been increasing. This is partly due to lack of knowledge on appropriate methods of grain storage. This post- 11 harvest management component will support farmers in securing high returns from investments on grain production. This is through adoption of improved on-farm grain handling practices to minimize post-harvest losses and enhanced access to markets offering favourable terms. This manuals’ goal is to reduce post-harvest losses from the current estimated 30% to industry accepted levels of below 5%. This will lead to usage of certified warehouse system by farmers to bulk and sell their produce at a price 30% higher than prevailing farm gate price.Item KCEP-CRAL Millet Training of Trainers’ Manual(Kenya Agricultural and Livestock Research Organization., 2019-04) Kisilu, R.; Muli, B.; Karanja, J.K.; Otipa, M.; Esilaba, A.O.; Nyongesa, D.; Okoti, M.; Mutuma, E.; Kathuku-Gitonga, A.N.; Too, A.; Mutisya, D.; Njunie, M.; Wasilwa, L.; Kenya Agricultural and Livestock Research OrganizationThe purpose of this training of trainer’s module is to familiarize extension officers, lead farmers and service providers on the millet production practices and empower them knowledge and skills to train farmers’ trainers.. This will enable them to impart knowledge on good agricultural millet production practices to farmers through farmer trainings.Millets are a group of grasses mainly found in the arid and semiarid regions. They produce small seeded grains and are often cultivated as cereals. They include Pearl millet (Pennisetum glaucum), Finger millet (Eleusine coracana), Proso millet (Panicum miliaceum) and Foxtail millet (Setaria italica). The popularity of millet fell for some years due to introduction of maize, wheat and rice, but the current unpredictable rainfall patterns accompanied by frequent maize crop failures have led to renewed interest in the production of indigenous, drought tolerant crops. Popularity of millets is once again on the rise with millers demand being far above the deliveries. Land under millets production in Kenya was 111,271 ha in 2011 with a production of 73,396 tons.Item Maize Trainer of Trainers’ Manual(Kenya Agricultural and Livestock Research Organization (KALRO), 2019-04) Karanja, J.K.; Otipa, M.; Esilaba, A.O.; Nyongesa, D.; Okoti, M.; Mutuma, E.; Kathuku-Gitonga, A.N.; Too, A.; Mutisya, D.; Njunie, M.; Muli, B.; Wasilwa, L.; Kenya Agricultural and Livestock Research Organization (KALRO)The purpose of this training of trainer’s module is to familiarize extension officers, lead farmers and service providers on the maize production manual content and empower them with the capacity and training methods. This will enable them to impart knowledge on good agricultural production practices of maize farming through farmer trainings. Maize (Zea mays L.) is a major staple food in Kenya. It can be used as food, feed for animals and as a source of industrial raw material. It contributes to about 65% of daily per capita cereal consumption. Maize accounts for more than 20% of the total agricultural production and 25% of agricultural employment in the country. Maize is an important source of carbohydrate, protein, iron, vitamin B, and minerals. Its products include baked, roasted and boiled fresh maize on the cob, porridge, pastes, beer, starch, oil and livestock feed from by-products of fresh and dry maize grain.