Browsing by Author "Miriti, J.M."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Integrating Inorganic and Organic Fertilizers in Cropping Systems for the Transformation of Maize Productivity in Nakuru County(East African Agricultural and Forestry Journa, 2023) Ooro, P.A.; Mwangi, H.G.; Esilaba, A.O.; Nyongesa, D.; Miriti, J.M.; Okoti, M.; Lusike, W.A.; Githunguri, C.; Thuranira, E.G.; Moraa, L.M.; Luvonga, J.; Osoo, J.O.; Bor, P.K.; Kenya Agricultural Livestock & Research Organization -Njoro (KALRO), Headquaters & KabeteDespite the immense significance of maize (Zea mays L.) for Kenya’s economic prosperity and food security, productivity and production have not significantly increased over time. This is attributed to a number of things, including decreased soil fertility. In order to ascertain the applicability of Integrated Soil Fertility Management (ISFM), a study was carried out between 2016 and 2017 in Nakuru County at the Kenya Agricultural and Livestock Research Organization (KALRO), Njoro Centre, Nakuru County. The treatments were arranged in a split-split plot in a randomized complete block design (RCBD) replicated four times. Soil and water conservation (SWC) and conventional tillage (CT) were allocated to the main plot, the split-plots and fertilizer sources i.e Farm yard manure (FYM), Nitrogen (N) and Phosphoros (P) fertilizers to the split-split plot. Kenya Seed Company maize hybrid (H6213) and Egerton bean variety (Chelalang) were used as test crops. A variety of maize and bean (Phaseolus vulgaris L) characteristics, such as plant stand at germination, plant vigor, days to 50% blooming, days to 50% maturity, plant stand at harvest, number of pods per plant, number of cobs, number of seeds per pod, grain yield, and 100-grain weight, were all recorded. Applying a full rate of inorganic fertilizer resulted in significantly maize yields (P< 0.05) compared to all other fertility management strategies, with the exception of those where a half rate of both inorganic and organic fertilizers was applied. The results further showed that the use of inorganic fertilizer alone considerably increased maize output whether cultivated as a sole crop or an intercrop compared to farmyard manure applied alone or in conjunction with inorganic fertilizer.Item The Organic Matter and Nitrogen Status of Manure on Smallholder Farms in Central Kenya(2003) Wamuongo, J.W.; Esilaba, A.O.; Miriti, J.M.; Mwangi, J.N.; Kimani, S.K.Mixed arable-livestock farming systems are common m central Kenya and manure from livestock is used as fertiliser in arable fields. However, increasing demographic pressure and intensification of agriculture has resulted in more continuous cultivation of arable lands without the concomitant application of fertilizers. Continuous cultivation of land has resulted in accelerated soil nutrient depletion, declIne in SOIl organic matter content, loss of physical structure and reduced crop productivity (Ikombo et al., 1994; Kilewe and Thomas, 1992).Item Validation of AquaCrop Model for Simulated Climate Change Strategies for Maize Production in a Kenyan Nitisol(East African Agricultural and Forestry Journal, 2023-01-11) Onyango, J.W.; Miriti, J.M.; Esilaba, A.O.; Kenya Agricultural and Livestock Research Organization (KALRO)Climate models predict temperature increases of between 3-4o C in Africa by the end of the 21st Century; roughly 1.5oC higher than the global mean. AQUACROP model was validated to compare climate adaptation measures of irrigation, fertility and planting dates using maize crop. Data was collected in the two seasons of 2012 at Kabete in the Upper Midland agro-zone of Kenya from Climate Analogue Location in East and Southern Africa (CALESA) project. Long-term monthly rainfall, minimum and maximum temperatures data from Kabete Meteorological Station were used to determine trends while additional parameters were used to compute other model parameters. A scenario of 10% decline in rainfall and 3oC temperature increase led to at least 6 and 12% enhanced of biomass and yields respectively. Late planted crop suffered 0.3% reduction in canopy cover (CC), and 7.5% reduced transpiration hence 0.2% biomass. This probably resulted from disuse of initial moisture availability and nitrogen flush usually at rainfall onset. Application of 20 kg/ha of N enhanced transpiration hence biomass and especially grain yields by 24.7%. However, while 40kg/ha of N enhanced canopy cover, this did not lead to increased biomass and/or yields. It is purposeless to irrigate when rains are adequate since this only delays harvest index but does not enhance biomass or yields. Late planting is not recommended since the crop would suffer reduced transpiration, CC and biomass. It is needless to continusly enhance fertility levels beyond 20 kg/ha for maize at Kabete.